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Generic differentiability

Let U be a nonempty open convex subset of a Banach space X . A
convex continuous function ϕ : U → R is Fréchet differentiable at
x ∈ U if there is f ∈ X ∗ such that

lim
t→0

ϕ(x + th)− ϕ(x)

t
= f (h)

uniformly on ‖h‖ = 1. We write f = ϕ′(x).

Theorem (Asplund 1968, Lindenstrauss 1962)

If a Banach space X has separable dual then every continuous
convex function ϕ : X → R is Fréchet differentiable at every point
of a dense Gδ-subset of X .

When ϕ : X → R satisfies the conclusion of this theorem, we say ϕ
is generically Fréchet differentiable.
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convex function ϕ : X → R is Fréchet differentiable at every point
of a dense Gδ-subset of X .

When ϕ : X → R satisfies the conclusion of this theorem, we say ϕ
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Radon-Nikodym property

We say that a Banach space X has the Radon-Nikodym property if
for every finite measure space (S ,Σ, µ) and every vector measure
γ : (S ,Σ)→ X of bounded variation with γ � µ there is a
Bochner integrable function g : S → X such that

γ(E ) =

∫
E
g dµ for all E ∈ Σ.

Theorem (Namioka-Phelps 1975, Stegall 1975)

The following are equivalent for a Banach space X :

1. Every continuous convex real function on X is generically
Fréchet differentiable.

2. The dual space X ∗ has the Radon-Nikodym property.

3. The weak* topology of every bounded subset of X ∗ is
fragmented by the norm.
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Fragmentability

A topological space (X , τ) is fragmented by a pseudo-metric ρ on
X , if for every nonempty subset A of X and ε > 0 there is U ∈ τ
such that U ∩ A 6= ∅ and ρ-diam(U ∩ A) < ε.

If for every ε > 0 we can find a countable partition X =
⋃∞

n=0 X
ε
n

with the property the for every n and A ⊆ X ε
n there is U ∈ τ such

that U ∩ A 6= ∅ and ρ-diam(U ∩ A) < ε then X is said to be
σ-fragmented by ρ.

Remark
The weak topology w of the space c0 is σ-fragmented by the norm
but c0 cannot be covered by countably many subsets Y with
w � Y fragmented by the norm.
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Three basic questions

BQ1. Which Banach spaces X have the property that (X ,w) is
σ-fragmented by the norm?

BQ2. Which Banach spaces X have the property that (X ,w∗) is
σ-fragmented by the norm?

BQ3. Which compact spaces K have the topology that the
topology τp on C (K ) of pointwise convergence on K is
σ-fragmented by the norm.
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Namioka’s theorem: two versions

Theorem (Namioka 1974)

Let K be a compact space and X either a complete metric space
of a compact space. Then for every separately continuous function
f : X × K → R there is a dense Gδ-subset G of X such that f is
jointly continuous at every point of G × K .

Theorem (Namioka 1974)

Let K be a compact space and X either a complete metric space
of a compact space. Then for every continuous function
F : X → (C (K ), τp) there is a dense Gδ-subset G of X such that
F : X → (C (K ), ‖ · ‖∞) continuous at every point of G .

The right assumption on X in this theorem is that it is Čech
complete, i.e., that it is a Gδ-subset of (one, equivalently, all) of its
compactification.
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From Čech-complete to Baire

Definition
A topological space X is a Baire space if the intersection of
countably many dense open subsets of X is dense in X .

Theorem (Jayne, Namioka, Rogers 1993)

Let (X , τ) be a topological space which is σ-fragmented by a
lower-semicontinuous metric ρ. Then for every continuous map
f : Y → (X , τ) where Y is a Baire space, the corresponding map
f : Y → (X , ρ) is continuous at each point of a dense Gδ-subset of
Y .

Definition
We say that the triple (X , τ, ρ) satisfies Namioka’s generic
continuity principle if the conclusion of the previous theorem holds.
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Generic continuity versus σ-fragmentability

BQ4. For which triple (X , τ, ρ) the generic continuity requirement
implies that τ is σ-fragmented by ρ?

Namioka-Pol 1992: ”It was even conjectured by one of us that, if
K has property (N ∗), then (C (K ), τp) is σ-fragmentable.”

Conjecture (Namioka 1990-1992)

For every compact space K the generic continuity requirement on
(C (K ), τp, ‖ · ‖∞) implies that τp is σ-fragmented by the norm.

Remark
If the function space (C (K ), ‖ · ‖∞ has the generic Fréchet
differentiability property then the compactum K must be
scattered. So it is natural to first examine this case.
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Universal meagerness

Theorem (Haydon 1989)

The topology τp of pointwise convergence of C (K ) for K a
scattered compactum is σ-fragmented by the norm if and only if
the restriction of τp on the function subspace C (K , 2) of
{0, 1}-valued continuous maps on K is σ-scattered.

Theorem (Haydon 1989, Namioka-Pol 1992)

The function space C (K ) over a scattered compactum K satisfies
the Namioka generic continuity requirement if and only if for every
Baire space B every continuous map f : B → (C (K , 2), τp) must
be constant on a nonempty open subset of B.
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Definition
A topological space X is universally meager if every continuous
map f : B → X from a Baire space B must be somewhere
constant (constant on a nonempty open subset of B).

Problem (Haydon 1989)

Is every universally meager topological space σ-scattered?

Problem (Haydon 1989)

Is every universally meager separable metric space countable?

Remark
Haydon [1989] writes:
“...it seems overly optimistic to think that the answer might be
affirmative...”.
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Mazur’s game and Baire spaces

For a topological space X the Mazur game on X , MG (X ), is an
infinite game with perfect information

E U0 U2 · · ·
N U1 U3 · · ·

where U0 ⊇ U1 ⊇ U2 ⊇ U3 ⊇ · · · are nonempty open subset of X ,
and where E wins if

⋂∞
n=0 Un = ∅; otherwise N wins the infinite

play.

Theorem (Banach-Mazur 1935, Oxtoby 1957)

A topological space X is a Baire space if and only if the empty
player E does not have a winning strategy in the Mazur game
played on X .
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Mazur’s ordinal

Fix an uncountable regular ordinal. Let [δ]<δ denote the collection
of all subsets of δ of size < δ. Let Σ(δ) denote the collection of all
subsets S of [δ]<δ for which there exist γ < δ such that for all
x , y ∈ [δ]<δ,

x ∩ γ = y ∩ γ implies x ∈ S iff y ∈ S .

S in Σ(δ) is positive if for every f : γ<ω → γ with γ < δ there is
x ∈ S such that f [(x ∩ γ)<ω] ⊆ x .

Let MG (δ) denote the game

I S0 S2 · · ·
II S1 S3 · · ·

where S0 ⊇ S1 ⊇ S2 ⊇ S3 ⊇ · · · forms an infinite decreasing
sequence of positive elements of Σ(δ) and where we proclaim
player I a winner if

⋂∞
i=0 Si = ∅.
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Definition
An ordinal δ is a Mazur ordinal if it is regular and uncountable and
if I does not have a winning strategy in MG (δ).

Remark
Deep work of Foreman, Magidor, Shelah and Woodin can be used
to show that many of the standard large cardinals are Mazur. For
example, the large cardinals used in the 1980’s by Martin and Steel
to prove the Projective Determinacy are also Mazur.
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A solution to Haydon’s problem

Theorem (T., 2007)

If a universally meager space X with point-countable base is
dominated by some Mazur ordinal then it can be well-odered
(X , <wo) in such a way that all initial segments {x ∈ X : x <wo y}
(y ∈ X ) are closed in X

Corollary (T., 2007)

Every universally meager metrizable space below a Mazur ordinal is
σ-discrete.

Corollary (T., 2007)

if there is a Mazur ordinal then every universally meager separable
metric space must be countable.
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A variety of Baire spaces

Fix a space X with point-countable base. We may assume
X = (γ, τ) for some γ < δ where δ is a Mazur ordinal. Consider
the following element of the field Σ(δ)

T = {x ∈ [δ]ω : x ∩ γ 6= x ∩ γ},

where the closure is taken with respect to the topology τ of X .

Lemma (T., 2007)

If T is positive then there is a Baire space B and a nowhere
constant continuous map f : B → X .

Lemma (Fleissner 1986)

If T is not positive there is a well-ordering of X with all initial
segments closed.
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Namioka’s conjecture

Theorem (T., 2007)

If a function space C(K ) is smaller that some Mazur ordinal and if
it satisfies the Namioka generic continuity requirement then the
norm-density of every subset X of C(K ) is equal to the supremum
of lengths of well-ordered chains of pointwise-open subsets of X .

Corollary (T., 2007)

If a function space C(K ) is bounded by some Mazur ordinal and if
it satisfies the Namioka generic continuity requirement then every
pointwise hereditarily Lindelöf subspace of C(K ) is norm-separable.
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Sierpinski’s expansion

Definition
The Sierpinski expansion of (R, <) is a structure of the form
(R, <,<wo) where <wo is a well-ordering of R. For a positive
integer k the Sierpinski equivalence SEk is an equivalence relation
on [R]k defined by letting two k-elements subsets a and b of R
equivalent if they generate isomorphic substructures of the
Sierpinski structure (R, <,<wo).

Theorem (Sierpinski 1933)

For every positive integer k every one of the k!(k − 1)! equivalence
class of SEk on [R]k is realized on every topological copy of Q in R.

Question (Galvin 1970, 1986)

Does the Sierpinski expansion (R, <,<wo) solve the expansion
problem for (R, <) relative to the topological copies of Q in R?
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Coloruing version: Galvin’s conjecture

Problem (Galvin 1970, 1986)

Is it true that for every positive integer k and every finite colouring
of [R]k there is a subset X homeomorphic to Q such that [X ]k has
at most k!(k − 1)! colours

Problem (Galvin 1970, 1986)

Is it true that for every finite colouring of [R]2 there is a subset X
homeomorphic to Q such that [X ]2 has at most 2 colours
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A general colouring problem

Theorem (Baumgartner 1986, T.-Weiss 1995)

For every σ-discrete metric space X there is c : [X ]2 → N such
that c[Y ]2 = N for every Y ⊆ X homeomorphic to Q.

Problem
Suposse X is a non σ-discrete metric space. Is it true that for
every finite colouring of [X ]2 there is a topological copy Y ⊆ X of
Q such that [Y ]2 has at most 2 colours?

Problem
Is this true when X is an uncountable separable metric space?
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Arrow notation

Let X and Y be topological spaces. For natural numbers
k , l , t ≥ 1, we write

X → (Y )kl ,t

to mean that for every set L of cardinality l and every coloring
c : [X ]k → L, there exist a subspace Y ′ ⊆ X homeomorphic to Y
and a subset T ⊆ L of cardinality at most t such that c[Y ′]k ⊆ T .
If t = 1, then it is not recorded in this notation, i.e., we write
X → (Y )kl instead of X → (Y )kl ,1.

Theorem (T., 1996)

The following are equivalent for a space X with a point-countable
base:

1. There is no well-ordering <wo of X with all initial segments
{x ∈ X : x <wo y} (y ∈ X ) closed.

2. X → (ω + 1)2
2.

3. X → (ω + 1)kl for all natural numbers k , l ≥ 1.
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Problem
Suppose X is a space with point-countable bases with no
well-ordering with all initial segments closed. Is it true that
X → (Q)2

l ,2 for every positive integer l?

Theorem (Raghavan-T. 2018)

Suppose X is a space with point-countable bases dominated by
some Mazur ordinal with no well-ordering with all initial segments
closed. Then X → (Q)2

l ,2 for every positive integer l .

Corollary (Raghavan-T. 2018)

Suppose X is a metric non σ-discrete space smaller than some
Mazur ordinal. Then X → (Q)2

l ,2 for every integer l ≥ 1.

Corollary (Raghavan-T. 2018)

If there is a Mazur ordinal then for every uncountable separable
metric space X , we have that X → (Q)2

l ,2 for every integer l ≥ 1.
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Ideas from the proof
We start with c : [X ]2 → {0, 1, ..., l} and assume X = (γ, τ) for
some γ < δ with δ a Mazur ordinal.

We assume the set

T = {x ∈ [δ]ω : x ∩ γ 6= x ∩ γ}
is positive and for each x ∈ T , let

γx = min(x ∩ γ \ x).

We fix a point-countable base N of X and for U ∈ N , set

UT = {x ∈ T : γx ∈ U}.

For ξ < γ we fix enumeration Nm(ξ) (m ∈ N) of all elements of
the basis N that contain ξ and let Un(ξ) =

⋂
m≤n Nm(ξ).

For i ≤ l , set

Ki = {{a, b} ∈ [T ]2 : γa 6= γb and c({γa, γb}) = i}.
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From now on we let the variables a, b, c ,... range over elements of
T and variables A, B, C ,... range over positive elements of the
field Σ(δ) that are included in T .

For a ∈ T and i ≤ l , set

Ki (a) = {b ∈ T : {a, b} ∈ Ki}.

Definition
We say that a ∈ T is i-large on B ∈ Σ(δ) if Ki (a) ∩ B is positive.

Definition
We say that (A,B) is (i , j)-saturated if for all A′ ⊆ A and B ′ ⊆ B,
the sets

{a ∈ A′ : a is i-large on B ′} and {b ∈ B ′ : b is j-large on A′}

are both positive.
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field Σ(δ) that are included in T .

For a ∈ T and i ≤ l , set

Ki (a) = {b ∈ T : {a, b} ∈ Ki}.
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Lemma
There exist (i , j) and C such that for every D ⊆ C there exist
A,B ⊆ D such that the pair (A,B) is (i , j)-saturated.

From now on we fix (i , j) and C and without loosing generality we
assume that in fact C = T .

Definition
We say that a ∈ A is a (i , j)-winner in A if there is an infinite
sequence (An,Bn) of subsets of A such that for all n :

1. An+1,Bn+1 ⊆ An,

2. An,Bn ⊆ UT
n (a),

3. (An,Bn) is (i , j)-saturated,

4. Bn ⊆ Ki (a).
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Lemma
For all positive A, the set

{a ∈ A : a is not a (i , j)-winner}

is null in Σ(δ).

Lemma
If a point a ∈ A is an (i , j)-winner in A, then there is an infinite
sequence Bn of subsets of A such that for all n:

1. Bn ⊆ UT
n (a),

2. (Bm,Bn) is (i , j)-saturated for all m < n,

3. Bn ⊆ Ki (a).

Here, UT
n (a) = (Un(γa))T
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Construction scheme

Lemma (Main)

There is Y ⊆ X homeomorphic to Q such that c[Y ]2 ⊆ {i , j}.

N<N is the tree of finite sequence of integers ordered by
endextension and <lex is its lexicographical ordering where σ ⊃ τ
implies σ <lex τ . For a subtree P of N<N by L(P) we denote its
end nodes and

N(P) = P \ L(P).

A construction scheme for the required set Y homeomorphic to Q
is an infinite increasing sequence Pm of downwards closed subtrees
of N<N such that for all m :

(1) P0 = {∅} and N<N =
⋃∞

m=0 Pm,

(2) Pm is nonempty and has finite height,

(3) there is σm ∈ L(Pm) such that

Pm+1 = {σ_m n : n ∈ N}.
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We also recursively construct sequences

{am : m ∈ N \ {0}} ⊆ [δ]ω and Fm : L(Pm)→ Σ(δ) (m ∈ N)

such that for all m :

(4) Fm(σ) is a positive subset of T for all σ ∈ L(Pm, )

(5) am+1 ∈ Fm(σm) is a (i , j)-winner in Fm(σm),

(6) m′ ≤ m and σ ∈ L(Pm′) ∩ L(Pm) imply Fm(σ) ⊆ Fm′(σ).

(7) σ, τ ∈ L(Pm) and σ <lex τ imply that (Fm(σ),Fm(τ)) is
(i , j)-saturated.

Note that by the previous lemmas there is no difficulties
constructing these objects. However, we need extra conditions that
would guarantee that

[{am : m ≥ 1}]2 ⊆ Ki ∪ Kj ,

that γam 6= γam′ for m 6= m′, and that

Y = {γam : m ≥ 1}

is a topolgical copy of Q in X .
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Therefore, we require also the following conditions:

(8) Fm+1(σ_m n) ⊆ Fm(σm) ∩ UT
m (am+1) for all n ∈ N,

(9) If m′ < m, if σ ∈ L(Pm) and if σ <lex σm′ then

Fm(σ) ⊆ Ki (am′+1),

(10) if m′ < m, if σ ∈ L(Pm), and if σm′ <lex σ, then

Fm(σ) ⊆ Kj(am′+1).

Remark
Note that in (9) and (10) we are proving that on our copy of Q the
given colouring c is coarser than the Sierpinski colouring.
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An application

Theorem (Raghavan-T., 2018)

Assume that there is a Mazur ordinal and let X be any uncountable
set of reals.

Let < be the usual ordering between the reals and let
<wo be any well-ordering of X . Then for every binary relation
R ⊆ X 2, there exists Y ⊆ X homeomorphic to Q such that
R ∩ Y 2 is equal to one of the following relations restricted to Y :
>, ⊥, =, 6=, <, >, ≤, ≥, <wo, >wo, ≤wo, ≥wo, < ∩<wo, < ∩>wo,
> ∩<wo, > ∩>wo, ≤ ∩≤wo, ≤ ∩≥wo, ≥ ∩≤wo, and ≥ ∩≥wo.
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Things left to do

Problem
If X is an uncountable separable metric space, does

X → (Q)kl ,k!(k−1)!

for every positive integers k and l?

If not, what is the optimal condition on X to guarantee this for all
k and l?

Problem
Prove that every universally meager space is σ-scattered.

Problem
Prove that the generic continuity requirement on a compact space
K guarantees that the topology on C (K ) of pointwise convergence
on K is σ-fragmented by the norm.
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